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Abstract

For a two-dimensional Moore space M with fundamental group G, we identify

the effect of the cellularization CWM and the fiber PM of the nullification on an

Eilenberg–Mac Lane space K(N, 1), where N is any group: both induce on the

fundamental group a group theoretical analogue, which can also be described in

terms of certain universal extensions. We characterize completely M -cellular and

M -acyclic spaces, in the case when M = M(Z/pk, 1).

0 Introduction

Let M be a pointed connected CW -complex. The nullification functor PM and the cel-

lularization functor CWM have been carefully studied in the last few years (see e.g. [8],

[17], [18], [14]). These are generalizations of Postnikov sections and connective covers,

where the role of spheres is replaced by a connected CW -complex M and its suspensions.

This list of functors also includes plus-constructions and acyclic functors associated with a

homology theory, for which M is a universal acyclic space ([2], [13], [22], [24]). Recall that

a connected space X is called M-cellular if CWMX ' X, or, equivalently, if it belongs to

the smallest class C(M) of spaces which contains M and is closed under homotopy equiv-

alences and pointed homotopy colimits. Analogously, X is called M-acyclic if PMX ' ∗
or, equivalently, PMX ' X. It was shown in [14] that the class of M-acyclic spaces

is the smallest class C(M) of spaces which contains M and is closed under homotopy

equivalences, pointed homotopy colimits, and extensions by fibrations.
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by the grant 81LA-51213 of the Swiss National Foundation for Science and the CRM.
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Very interesting examples are given by the family of Moore spaces M(Z/p, n), the

homotopy cofiber of the degree p self-map of Sn. For n ≥ 2, these spaces are the “building

blocks” for simply-connected p-torsion spaces. More precisely, it is shown in [3] (see

also [11]) that the M(Z/p, n)-cellular spaces are exactly the (n− 1)-connected spaces X

such that p ·πnX = 0 and πkX is p-torsion for k > n. However the methods used in those

papers can not handle the case n = 1. In this paper we introduce the group theoretical

tools that are necessary to deal with this case. They apply to the more general situation

when M is a two-dimensional CW -complex with fundamental group G. As we will see in

Proposition 2.10 and in the introduction of Section 3, the interesting phenomena occur

when H2(M ; Z) = 0. In that case we say that M is a Moore space of type M(G, 1), and

we shortly write M = M(G, 1).

The G-socle of a group N , which we denote by SGN , is the subgroup of N generated

by the images of all homomorphisms from G into N . We introduce the class C(G) for any

groupG. It is the smallest class of groups containingG which is closed under isomorphisms

and colimits. We construct explicitely the right adjoint CG to the inclusion of C(G) in

the category of groups and show the following (see also Theorem 2.3).

Theorem 2.9 Let M be a two dimensional CW -complex with fundamental group G. Let

X = K(N, 1) where N is any group. Then we have a natural isomorphism

π1(CWMX) ∼= CGN.

Moreover, the action of CGN on the higher homotopy groups of CWMX is trivial.

We further prove the existence of a central extension

0→ A→ CGN → SGN → 1

which is universal in the sense explained in Theorem 2.7.

The proof of such results uses a description of Chachólski, exhibiting CWMX as the

fibre of a map X → LX, where LX is obtained from X by first killing all maps from M ,

and then applying ΣM-nullification.

This leads us, in the case when G = Z/p, to the following result. We must note that

our proof is also valid for M(Z/p, n) with n ≥ 2, cases which were previously dealt with

in [3] or [11].

2



Theorem 6.2 Let M = M(Z/p, 1) be the cofiber of the degree p self-map of S1 and X be

a connected space. Then X is M-cellular if and only if π1X is generated by elements of

order p and Hn(X; Z) is p-torsion for n ≥ 2.

In particular, a nilpotent space X is M(Z/p, 1)-cellular if and only if π1X is generated by

elements of order p and πn(X) is p-torsion for n ≥ 2.

Of course, the homotopy groups of non-nilpotent M-cellular spaces need not be p-

groups. For instance, the universal cover of M(Z/2, 1) is S2. Likewise, a space all whose

homotopy groups are p-groups need not be M-cellular, as shown by Example 6.4, where

we compute the M(Z/2, 1)-cellularization of K(Σ3, 1).

Nullifications with respect to Moore spaces are better understood. Our aim here is to

investigate the homotopy fibre of such nullifications.

Recall that the G-radical of a group N , which we denote by TGN as in [10] or [8], is the

smallest subgroup of N such that Hom(G,N/TGN) = 0. It is known [10] that when M is a

two dimensional CW -complex with fundamental group G, then π1PMX ∼= π1X/TG(π1X).

If in additionM is aM(G, 1), the space PMX can be viewed as the fibrewise R-completion,

in the sense of Bousfield and Kan [9], of a covering fibration associated to the G-radical

subgroup (for a suitable coefficient ring R); see [9], [10], and [12].

We introduce the class C(G), for any group G. It is the smallest class of groups

containing G which is closed under isomorphisms, colimits, and extensions. We show in

Proposition 3.11 that the fundamental group of any M-acyclic space belongs to this class.

We define then DGN as the fundamental group of PMK(N, 1), note that the action of

DGN on the higher homotopy groups of PMK(N, 1) is trivial, and prove:

Theorem 3.13 Let M = M(G, 1) be a two-dimensional Moore space. Then DG is right

adjoint to the inclusion of C(G) in the category of groups.

As in the case of cellularization, there exists a central extension

0→ B → DGN → TGN → 1 (0.1)

which is universal in the sense explained in Theorem 3.3.

A very enlightening example is given by the acyclic space described by Berrick and

Casacuberta in [2, Example 5.3], which turns out to be an M(G, 1) for some acyclic

group G. In this case M(G, 1)-nullification is equivalent to Quillen’s plus-construction
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and the G-radical of any group N is its largest perfect subgroup. Thus, in this case, the

central extension (0.1) is the usual universal central extension of TGN .

Similar results have been obtained by Mislin and Peschke in [22] in the case when PM

is the plus construction associated to a generalized homology theory. In all these cases

CWM and PM coincide.

Finally, we obtain the following result for G = Z/p (compare with [3] or [11]).

Theorem 6.1 Let M = M(Z/p, 1). Then X is M-acyclic if and only if π1X coincides

with its Z/p-radical and Hn(X; Z) is p-torsion for n ≥ 2.

In particular, a nilpotent space X is M(Z/p, 1)-acyclic if and only if π1X coincides with

its Z/p-radical and πn(X) is p-torsion for n ≥ 2.

Acknowledgements: This paper was mainly elaborated during the 1998 Topology Semester

at the CRM. We are especially indebted to Jon Berrick and Wojciech Chachólski for

several enlightening discussions. We warmly appreciate Carles Casacuberta’s advice and

encouragement. The second author would like to thank the CRM for making the life of a

post-doctoral fellow so pleasant.

1 Preliminary results

We give here a short review of the terminology involved in the theory of homotopical

localization. We also remind the reader some of the results needed in this paper. More

details can be found in [17], [18], [14], [7].

By an idempotent augmented functor in the category of spaces, we mean a functor E

from the category of pointed spaces to itself. It preserves weak homotopy equivalences

and is equipped with a natural transformation c : E → Id from E to the identity functor,

such that cEX : EEX ' EX for all spaces X.

The most important examples for us are CWM and PM . Let M be a connected CW -

complex. A map Y → X is an M-cellular equivalence if it induces a weak equivalence on

pointed mapping spaces

map∗(M,Y )
∼−→ map∗(M,X) .

There exists then, for each connected space X, a map CWMX → X, called M-cellular

approximation, which is universal (initial) among all M-cellular equivalences to X. The
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spaces for which CWMX ' X are called M-cellular. The class of M-cellular spaces

has been identified as the smallest class C(M) of spaces containing M and closed under

weak equivalences and pointed homotopy colimits; see [14, Theorem 8.2] and [18, 2.D].

A connected space Z is said to be M-null if map∗(M,Z) is weakly contractible, that is,

[ΣkM,X] = ∗ for all k ≥ 0. There exists a map X → PMX, called M-nullification,

which is universal (terminal) among all maps from X to an M-null space. Finally denote

by PMX → X the homotopy fibre of X → PMX. A connected space X is called M-

acyclic if PMX ' ∗, i.e., PMX ' X. The class of M-acyclic spaces has been identified in

[14, Theorem 17.3] as the class C(M). In addition to being closed under weak equivalences

and pointed homotopy colimits, it is also closed under extensions by fibrations.

So, every M-cellular space isM-acyclic and furthermore, it is known that each ΣM-acyclic

space is M-cellular ([18, 3.B.3]). Hence by universality we have natural maps

PΣMX
α−→ CWMX

β−→ PMX. (1.2)

Thus CWMX can be thought of as the fiber of a mixing process between M- and ΣM-

nullification. More precisely:

Theorem 1.1 ([14, Theorem 20.5]) Let M be any connected CW -complex. There is a

fibration

CWMX −→ X
η−→ LX

where η is the composition of the inclusion X → X ′ of X into the homotopy cofibre of the

evaluation map ∨[M,X]M → X, followed by X ′ → PΣM(X ′).

Note that the inclusion X → X ′ is in fact functorial in the homotopy category, and it is

universal (initial) among all maps X → Z such that M → X → Z is homotopically trivial

(compare with [2, Corollary 2.2]). Hence, X → LX is also functorial in the homotopy

category.

The fundamental groups of PMX and LX have a group theoretical meaning in the

case when M is a two-dimensional CW -complex, as we next explain. The G-socle of a

group N , which we denote by SGN , is the subgroup of N generated by the images of all

homomorphisms from G into N . The G-radical of N , which we denote by TGN as in

[10] or [8], is the smallest subgroup of N such that Hom(G,N/TGN) = 0. The G-radical
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of N can be constructed as a (possibly transfinite) direct limit of subgroups Ti where T1

is the G-socle of N and Ti/Ti−1 = SG(N/Ti−1). In other words, the groups N such that

TGN = N are precisely the groups which have a normal series whose factors coincide

with their G-socles. The first link between the topological nullification and their discrete

analogues is given by the following result. Its first part is [10, Theorem 3.5] (see also

[6, Theorem 5.2]).

Lemma 1.2 If M is a two-dimensional CW -complex with fundamental group G and X

is any space, we have isomorphisms

π1(PMX) ∼= π1X/TG(π1X) and π1X
′ ∼= π1LX ∼= π1X/SG(π1X),

where X ′ and LX are as in Theorem 1.1. 2

Such a two-dimensional CW -complex M is called a Moore space if H2(M ; Z) = 0. It

has type M(G, 1) if π1M ∼= G. Using Theorem 1.1 it is easy to see that two Moore spaces

of type M(G, 1) determine the same cellularization and nullification functors.

Bousfield computed in [8, Section 7] the effect of the nullification functor with respect

to a two-dimensional Moore space M(G, 1) on nilpotent spaces; see also [10, Theorem 4.4]

for G = Z/p, and [12, Theorem 2.4] when G = Z[1/p]. Let J be the set of primes p for

which Gab is uniquely p-divisible. Define R = Z(J), the integers localized at J , if Gab

is torsion, and R = ⊕p∈JZ/p otherwise. Let R∞X be the Bousfield-Kan R-completion

of X; see [9]. Then PMX can be obtained as the fibrewise R-completion of the covering

fibration associated to the G-radical of π1X. That is, we have a diagram of fibrations

X̃ −→ X −→ K(π1X/TG(π1X), 1)

↓ ↓ ↓id

R∞X̃ −→ PMX −→ K(π1X/TG(π1X), 1),

(1.3)

where R∞X̃ is simply connected, as the fundamental group of X̃ is R-perfect, i.e.,

H1(X̃;R) = H1(TG(π1X);R) = 0. Hence R∞X̃ coincides with X̃+
HR, the plus-construction

with respect to ordinary homology with coefficients in R; see [9, VII.6] and [12]. The uni-

versal cover of PMX is thus equivalent to the three following spaces:

PMX̃ ' R∞X̃ ' X̃+
HR.

Let ARX denote the R-acyclic functor, that is, the homotopy fiber of X → X+
HR (cf.

[9, VII, 6.7]). Then, a connected space X is HR-acyclic, i.e., H̃∗(X;R) = 0, if and only

if ARX ' X. The above remark immediately implies the following.
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Proposition 1.3 Let M = M(G, 1) be a two-dimensional Moore space, and X be any

connected space. If X̃ denotes the covering of X corresponding to the subgroup TG(π1X),

then

PMX ' ARX̃ ' PMX̃,

where R is the ring associated to G as above. 2

Corollary 1.4 Let M = M(G, 1) be a two-dimensional Moore space, and X be any

connected space. Then, X is M-acyclic if and only if

TG(π1X) = π1X and Hk(X;R) = 0 for k ≥ 2 . 2

2 The fundamental group of M(G, 1)-cellular spaces

In this section we define algebraically a G-cellularization functor CG in the category

of groups. We show that CGN coincides with the fundamental group of the M(G, 1)-

cellularization of K(N, 1). This yields a characterization of CGN as a certain universal

central extension of the G-socle of N . We also prove that the action of CGN is trivial on

the higher homotopy groups of CWM(G,1)K(N, 1).

As suggested by Dror-Farjoun, we introduce the closed class of groups C(G). It is the

smallest class of groups containing G, and closed under isomorphisms and taking colimits.

In other words, if F : I → Groups is a diagram with F (i) ∈ C(G) for any i ∈ I, then

colim IF should again belong to C(G).

The following proposition gives the explicit construction of a G-cellularization functor.

The existence of such a functor is also ensured by [5, Corollary 7.5].

Proposition 2.1 Let G be a group. The inclusion C(G) ⊂ Groups has a right adjoint

CG : Groups→ C(G).

Proof. For any group N , the map CGN → N is constructed by induction as follows.

First define C0 = ∗h:G→NG, the free product of as many copies of G as there are morphisms

from G to N , and let h0 : C0 → N be the evaluation (so that h0(C0) = SGN). Now take

the free product ∗(h′,h′′)G, where h′, h′′ : G → C0 is any pair of morphisms coequalized

by h0. Define C1 as the coequalizer of ∗(h′,h′′)G ⇒ C0, and repeat this process (maybe

transfinitely). Notice that this inductive construction of CGN shows that we have a
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natural epimorphism CGN→→SGN for any group N . The group CGN is in C(G) and

the morphism c : CGN → N is universal (terminal), i.e., c induces a bijection of sets

Hom(G, c) : Hom(G,CGN) ∼= Hom(G,N). 2

By analogy to the case of spaces, a group N in C(G) is called G-cellular.

Lemma 2.2 Let M be a two-dimensional CW -complex with fundamental group G. A

group homomorphism N → N ′ induces an isomorphism CGN ∼= CGN
′ if and only if

CWMK(N, 1) ' CWMK(N ′, 1).

Proof. The pointed mapping space map∗(M,K(N, 1)) is weakly equivalent to the dis-

crete set Hom(G,N). 2

Since π1 commutes with homotopy colimits, the fundamental group of any M-cellular

space is π1M-cellular, for any M . Furthermore, the following holds (this could also have

been taken as definition of CG):

Theorem 2.3 Let M be a two-dimensional CW -complex with fundamental group G. Let

X = K(N, 1) where N is any group. Then we have a natural isomorphism

π1(CWMX) ∼= CGN.

Proof. By the previous observation, π1(CWMX) is G-cellular. It thus only remains to

prove that c : CWMX → X induces a bijection of sets π1(c)∗ = Hom(G, π1(c)). Consider

the following commutative diagram (of sets)

[M,CWMX]
e−→ Hom(G, π1(CWMX))

↓c∗ ↓π1(c)∗

[M,X]
e′−→ Hom(G,N).

Since M is two-dimensional, e is surjective and X being a K(N, 1), e′ is bijective. On

the other hand, c∗ is also bijective by the universal property of CWM . Thus, π1(c)∗ is

bijective, as desired. 2

Lemma 2.4 Let X̃ denote the covering of X corresponding to the subgroup SG(π1X) and

let M be a two-dimensional CW -complex with fundamental group G. Then

(i) (X̃)′ is the universal cover of X ′,

(ii) LX̃ is the universal cover of LX,

where X ′ and LX are defined in Theorem 1.1.
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Proof. The covering fibration X̃ → X
p→ K(π1X/SG(π1X), 1) induces a bijection

[M, X̃] ∼= [M,X] because the map [M, p] is trivial. Apply now Mather-Puppe theorem

(see [16, Proposition 6.1]) saying that “the fiber of the push-out is the push-out of the

fibers” when the base space is fixed, to get a fibration X̃ ′ → X ′ → K(π1X/SG(π1X), 1).

This is the universal cover fibration by Lemma 1.2. So part (i) holds. For part (ii) we

note that the previous fibration has a ΣM-null base, and is therefore preserved under

ΣM-nullification. 2

The following corollary could also have been proved directly by checking that the

covering X̃ → X is indeed an M-equivalence.

Corollary 2.5 Let X̃ denote the covering of X corresponding to the subgroup SG(π1X)

and let M be a two-dimensional CW -complex with fundamental group G. We have a

homotopy equivalence CWMX ' CWMX̃. 2

Lemma 2.6 Let G be any group, and 0 → A → E → N → 1 be a central extension

of groups. Then CGE ∼= CGN if and only if Hom(Gab, A) = 0 and the natural map

Hom(G,N) −→ H2(G;A) is trivial.

Proof. Apply map∗(K(G, 1),−) to the fibration

K(E, 1)→ K(N, 1)→ K(A, 2) .

This gives a new fibration, whose homotopy sequence

0→ Hom(G,A)→ Hom(G,E)→ Hom(G,N)→ H2(G;A)

is exact as in [9, IX, 4.1]). The lemma is proved. 2

We now know enough to describe our first universal central extension. It is nothing

but a universal central G-cellular equivalence.

Theorem 2.7 Let G be any group. Then, for each group N , there is a central extension

0→ A→ CGN → SGN → 1

such that Hom(Gab, A) = 0 and the natural map Hom(G,N) −→ H2(G;A) is trivial.

Moreover, this extension is universal with respect to these two properties.
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Proof. Let M be a two-dimensional CW -complex with fundamental group G and let

X = K(SGN, 1). The space LX is 1-connected by Lemma 1.2 and define then

A = π2LX ∼= π2X
′/TGab

(π2X
′)

(this follows from [8, Theorem 7.5]). The long exact sequence in homotopy of the fibration

CWMX → X → LX produces now the desired central extension, where we identify

CG(SGN) with CGN . This can be deduced from Corollary 2.5. The G-cellularization

of CGN → SGN is also an isomorphism since Hom(G,CGN) ∼= Hom(C, SGN). Hence

Hom(Gab, A) = 0 and the natural map Hom(G,N) −→ H2(G;A) is trivial by Lemma 2.6.

The universal property is a direct consequence of the same lemma. 2

Corollary 2.8 Let M be a two-dimensional CW -complex with fundamental group G.

Then SGN = N if and only if LK(N, 1) is 1-connected, and CGN ∼= N if and only if

LK(N, 1) is 2-connected. In particular

(1) π2LK(N, 1) ∼= H2LK(SGN, 1);

(2) π3LK(N, 1) ∼= H3LK(CGN, 1). 2

In the next theorem we identify the universal cover of CWMK(N, 1) and remark that

the action of the fundamental group is trivial. This could also be seen as a particular case

of [20, Proposition A.1] or the even more general [22, Corollary 7.7].

Theorem 2.9 Let M be a two-dimensional CW -complex with fundamental group G.

Then CWMK(N, 1) ' CWMK(CGN, 1) and the universal cover fibration is given by

ΩLK(CGN, 1) −→ CWMK(N, 1) −→ K(CGN, 1).

Moreover the action of CGN on πnCWMK(N, 1) for n ≥ 2 is trivial.

Proof. The first part follows from Lemma 2.2. The proof of the second part has been

suggested by Carles Casacuberta. The fibration

CWMK(N, 1)→ K(CGN, 1)→ LK(CGN, 1)

induces a long exact sequence of CGN-modules in homotopy. But the space LK(CGN, 1)

is 2-connected by Corollary 2.8, so that the action of CGN on the higher homotopy groups

of CWMK(N, 1) is trivial. 2
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Proposition 2.10 Let M be a two-dimensional CW -complex with fundamental group G.

Assume that H2(M ; Z) 6= 0. Then

CWMK(N, 1) ' K(CGN, 1) .

Proof. Choose a presentation φ : ∗Z → ∗Z of G, and realize it as a map f between

wedges of circles having M as its homotopy cofiber. Note that a simply connected space

Y is ΣM-null if and only if the G-radical of π2Y is trivial, and πkY is φab-local for any

k ≥ 3, i.e., Hom(φab, πkY ) is bijective (see [23, Theorem 4.3.6]). When H2(M ; Z) 6= 0,

the homomorphism φab is not injective and any φab-local group is trivial. So LK(CGN, 1)

is the trivial space, as it is already 2-connected (see [23, Corollary 4.3.9]). 2

Example 2.11 If G = C2 and N is nilpotent then CGN = SGN (by Corollary 6.3

below). However, CGN 6∼= SGN in general, as shown by the following example, which was

suggested by Alejandro Adem:

N = 〈a, b, c, d | a2 = b2 = c2 = d2 = 1, abab = cdcd〉 .

In other words N is the push-out of the diagram C2 ∗ C2 ← Z → C2 ∗ C2 where both

arrows send the generator of Z to the commutator. The Mayer–Vietoris sequence shows

then that H2N ∼= Z ∼= A. Thus CGN is an extension of N by Z. This also provides an

example of a quotient of a free product of copies of G which is not cellular.

3 The fundamental group of M(G, 1)-acyclic spaces

We imitate now the preceding section, replacing CWM by PM . First we change our

closed class. In addition to being closed under isomorphisms and colimits, the class C(G)

is assumed to be closed under taking arbitrary extensions. That is, if N ↪→ E→→Q is

an extension with N,Q ∈ C(G), then E belongs to C(G) as well. The right adjoint of

the inclusion of C(G) in the category of groups is denoted by DG and we construct it

by topological means, namely as the fundamental group of PM(G,1)K(N, 1). It could be

interesting to have an algebraic description of DGN , similar to that of CGN , in terms of

colimits and extension by short exact sequences.

A well known topological proof of the existence of the universal central extension over

a perfect group N uses Quillen’s plus-construction. We will follow exactly the same line
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of proof here, the plus-construction being replaced by a nullification functor with respect

to a Moore space. This is a true generalization of this old result in light of [2], where it

is proven that the plus-construction is indeed the nullification with respect to a Moore

space. Another approach is taken in [22], where the plus-construction associated to any

homology theory determines a universal central extension.

When M is a two-dimensional CW -complex with fundamental group G which is not

a Moore space, i.e., H2(M ; Z) 6= 0, the effect of PM is drastic. As in the proof of

Proposition 2.10, one shows that

PMX ' K(π1X/TG(π1X), 1).

Hence PMX is the covering of X corresponding to the subgroup TG(π1X). From now on,

we will therefore only consider Moore spaces.

Define, for a two-dimensional Moore space M = M(G, 1),

DGN := π1(PMK(N, 1)).

This does not depend on the choice of M by the observation made after Lemma 1.2.

Lemma 3.1 Let M be a two-dimensional Moore space with fundamental group G and let

B denote the group π2PMK(TGN, 1). The space K(B, 2) is then M-null, or equivalently,

Hom(Gab, B) = 0 = Ext(Gab, B).

Proof. The space PMK(TGN, 1) is 1-connected by Lemma 1.2. The second Postnikov

section K(π2X, 2) of a simply connected M-null space X is M-null as well, since π2PMX

only depends on π2X by [8, Theorem 7.5]. 2

The groups B satisfying Hom(Gab, B) = 0 = Ext(Gab, B) can only be of the two

following forms ([8, 7.1]):

Fact 3.2 Let J denote the set of primes p such that Gab is uniquely p-divisible, and

J ′ the complementary set of primes. Then, either Gab is J ′-torsion and B is J-local,

or Gab is uniquely J-divisible and B is Ext-J-complete (in the sense of [9]). In other

words, Hom(Gab, B) = 0 = Ext(Gab, B) if and only if Hom(H,B) = 0 = Ext(H,B) where

H = ⊕p∈J ′Z/p if Gab is torsion, or H = Z[J−1] otherwise.

We are now ready to prove the existence of our second universal central extension.
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Theorem 3.3 Let G be the fundamental group of a two-dimensional Moore space, which

we denote by M . Then, for each group N , there is a central extension

0→ B → DGN → TGN → 1

such that Hom(Gab, B) = 0 = Ext(Gab, B). Moreover, this extension is universal (initial)

with respect to this property.

Proof. The idea of the proof is analogous to that of Theorem 2.7. Let X = K(TGN, 1).

The fibration PMX → X → PMX produces the desired extension using Proposition 1.3,

where B = π2PMK(TGN, 1) satisfies the property by Lemma 3.1.

We check now the universal property. Let B′ be an abelian group having the above

property, and 0 → B′ → E → TGN → 1 a central extension. Realize it as a fibration

K(E, 1) −→ X −→ K(B′, 2), where the base space is M-null. There exists therefore a

map PMX → K(B′, 2), unique up to homotopy, inducing a map of fibrations. 2

Example 3.4 Let G = C2 and N be the group described in Example 2.11. Then DGN

is an extension of N by Z[1/2].

Remark 3.5 The group TGN is R-perfect and the central extension of Theorem 3.3 is

the universal central extension of TGN with coefficients in R. By this we mean the cen-

tral extension induced from the fibration ARK(TGN, 1) → K(TGN, 1) → K(TGN, 1)+
HR.

These two extensions coincide by Proposition 1.3. Even though this “R universal central

extension” seems to be classical, we do not know any other reference than [22].

Example 3.6 Let G = Z[1/p], so that R = Z/p. In [22, Proposition 5.4] Mislin and

Peschke computed that

B ∼= Ext(Z(p∞), H2(TGN ; Z)) ⊕ Hom(Z(p∞), H1(TGN ; Z)) ,

where Z(p∞) is the p-torsion subgroup of Q/Z. Let G = Z/p, so that R = Z[1/p]. Then

B = H2(TGN ;R).

An interesting consequence of the previous result is that the functor DG is idempo-

tent. It is worth noting that it seems rather difficult to prove this fact directly from the

definition.
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Theorem 3.7 Let M be as above. Then PMK(DGN, 1) ' PMK(N, 1) and in particular

the functor DG is idempotent. The universal cover fibration is given by

ΩPMK(DGN, 1) −→ PMK(N, 1) −→ K(DGN, 1).

Moreover the action of DGN on πnPMK(N, 1) for n ≥ 2 is trivial.

Proof. The functor PM preserves the fibration

K(DGN, 1)→ K(TGN, 1)→ K(B, 2)

of Theorem 3.3 since K(B, 2) is M-null by Lemma 3.1. Thus so does the functor PM .

That is, we have PMK(DGN, 1) ' PMK(TGN, 1). The later space is equivalent to

PMK(N, 1) by Proposition 1.3. The statements about the universal cover fibration follow

as in Theorem 2.9. 2

Remember that the ring R is determined by the group G as follows: R = Z(J) if Gab

is torsion, and R = ⊕p∈JZ/p otherwise. We say that a group N is super R-perfect if

H1(N ;R) = 0 = H2(N ;R).

Proposition 3.8 Let G be the fundamental group of a two-dimensional Moore space M .

The following statements are equivalent:

(1) DGN ∼= N .

(2) The space PMK(N, 1) is 2-connected.

(3) H2(N ;B) = 0 for any B such that Hom(Gab, B) = 0 = Ext(Gab, B).

(4) TGN = N and N is super R-perfect.

Proof. Theorem 3.3 implies that (1), (2), and (3) are equivalent. We only prove that

(4) implies (2). Since N coincides with its G-radical, PMK(N, 1) ' K(N, 1)+
HR (see

diagram (1.3)), and it is 1-connected. Thus K(N, 1)+
HR ' K(N, 1)HR the HR-homological

localization by [22, Proposition 1.6]. Moreover, by [4, Theorem 5.5], π2K(N, 1)HR is an

HR-local group. But H1(π2K(N, 1)HR;R) = 0, so it has to be trivial. 2

As a consequence, we obtain the following formulae for the low-dimensional homotopy

groups of PMK(N, 1); cf. [1, Corollary 8.6].
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Corollary 3.9 Let M be a two-dimensional Moore space with fundamental group G.

Then

(1) π2PMK(N, 1) ∼= H2PMK(TGN, 1);

(2) π3PMK(N, 1) ∼= H3PMK(DGN, 1). 2

We end this section by proving that this topological construction gives nothing else

but the right adjoint of the inclusion of C(G) into the category of groups. We denote the

class {N |DGN ∼= N} by D(G).

Proposition 3.10 Let M be a two-dimensional Moore space with fundamental group G.

The class D(G) is closed under arbitrary extensions and colimits.

Proof. The class of G-radical groups is closed under colimits and extensions, and so is

the class of super R-perfect groups: An easy Hochschild–Serre spectral sequence argument

shows that an extension of super R-perfect groups is again super R-perfect, and a Mayer–

Vietoris argument shows it for a push-out. Since homology commutes with telescopes,

the proposition is proved. 2

Proposition 3.11 Let M be a two-dimensional Moore space with fundamental group G.

Then C(G) = D(G).

Proof. By Proposition 3.10, C(G) ⊂ D(G). To show the converse we prove that the

fundamental group of any space in C(M) is in C(G). But C(M) is the smallest class con-

taining M which is closed under homotopy colimits and extensions by fibrations. Clearly

the fundamental group of the homotopy colimit of a diagram all whose values have π1 in

C(G) is again in C(G). So assume we have a fibration F → E → B of connected spaces,

where the fundamental groups of F and B are in C(G). We have to prove π1E ∈ C(G).

The cokernel of the boundary morphism π2B → π1F is isomorphic to the coinvariants

(π1F )π2B = colimπ2B(π1F ) and thus belongs to C(G). Therefore π1E is an extension of

two groups of C(G). 2

Corollary 3.12 Let G be the fundamental group of a two-dimensional Moore space M .

A group N belongs then to D(G) if and only if there exists an M-acyclic space X with

π1X ∼= N . 2
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Theorem 3.13 Let M be a two-dimensional Moore space with fundamental group G.

The augmented functor DG is then right adjoint to the inclusion of C(G) in the category

of groups, i.e., we have an isomorphism Hom(L,DGN) ∼= Hom(L,N) for any group

L ∈ C(G).

Proof. The map K(DGN, 1)→ K(N, 1) induces a weak equivalence

PMK(DGN, 1) ' PMK(N, 1)

by Theorem 3.7. Let L ∈ C(G). Then

map∗(PMK(L, 1), K(DGN, 1)) ' map∗(PMK(L, 1), K(N, 1)) ,

i.e., Hom(L,DGN) ∼= Hom(L,N). 2

4 Acyclic spaces

We illustrate the preceding sections by the case when the Moore space M is acyclic. We

identify the functors PM and CWM . The motivating example is the universal acyclic

group F of Berrick and Casacuberta [2, Example 5.3]. It satisfies SFN = TFN = PN ,

the maximal perfect subgroup of N . In this case CFN = DFN = P̃N the universal

central extension of PN and the two central extensions coincide. If M = M(F , 1), the

functors PM and CWM coincide with Dror’s acyclic functor A, the fiber of Quillen’s

plus-construction.

We want to consider now an arbitrary acyclic group G, and an acyclic complex M

with fundamental group G. This space M is of course not determined by the group. Since

ΣM ' ∗, the fibration of Theorem 1.1 has the form

CWMX → X → X ′

where X ′ is the homotopy cofibre of the map ∨[M,X]M → X. Let X+
N denote the plus-

construction of X with respect to a perfect, normal subgroup N of π1X, and let ANX

be the homotopy fibre of the natural map X → X+
N . The universal property of the plus-

construction ensures that X ′ ' X+
S , where S = S(M,X) is the topological socle, i.e.,

the subgroup generated by the images of all homomorphisms π1(M)→ π1(X) which are

induced by maps M → X (see [2, Section 2]). This subgroup of π1X is sometimes also
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called the subgroup swept by M . Arguing similarly with PMX we deduce the following;

cf. [2, Corollary 2.2].

Theorem 4.1 Let M be an acyclic CW -complex. Then the map β : CWMX → PMX

is equivalent to ASX → ATX where S is the subgroup swept by M and T is such that

π1PMX ∼= π1X/T . 2

When M is two-dimensional, S = SGN and T = TGN for all X, and N denotes

the fundamental group of X. We also have S = SGN if M is any CW -complex and

X = K(N, 1). Therefore, we deduce the following.

Corollary 4.2 Let X be a space with fundamental group N and M an acyclic CW -

complex with fundamental group G. Suppose that M is of dimension two or X = K(N, 1).

Then π1(CWMX) ∼= CGN is the universal central extension of SGN . 2

5 Nilpotent spaces

When X is a nilpotent space, the homotopy long exact sequence associated to the fibration

PMX → X → PMX yields the homotopy groups of the M-acyclic part of X, as follows:

Proposition 5.1 Let n ≥ 1, M be a Moore space M(G, n), and let X be any connected

space. Suppose that X is nilpotent if n = 1. Let J be the set of primes p such that G is

uniquely p-divisible and J ′ be the complementary set of primes. Then PMX is (n − 1)-

connected and for k ≥ n

(I) if Gab is torsion, then

πk(PMX) ∼=


Πp∈J ′(Z(p∞)⊗ πk+1X ⊕ Tor(Z(p∞), πkX)) if k ≥ n+ 1,

Πp∈J ′(Z(p∞)⊗ πn+1X ⊕ TG(πnX)) if k = n;

(II) if Gab is not torsion, then

πk(PMX) ∼=


Πp∈J(Ext(Z[1/p], πk+1X) ⊕ Hom(Z[1/p], πkX)) if k ≥ n+ 1,

Πp∈J(Ext(Z[1/p], πn+1X) ⊕ DG(πnX) if k = n.
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Proof. We use from [8, Theorem 7.5] that in the first case we have

πk(PMX) ∼=


πk(X)⊗ Z(J ′) if k ≥ n+ 1,

πnX/TG(πnX) if k = n;

In the second case we have:

πk(PMX) ∼=


Πp∈J(Ext(Z(p∞), πkX) ⊕ Hom(Z(p∞), πk−1X)) if k ≥ n+ 1,

πnX/TG(πnX) if k = n.

2

Example 5.2 Let G be a rational group of rank 1 of type (r2, r3, r5, . . . ). That is, G is the

additive subgroup of Q generated by the fractions 1/ps, for s ≤ rp (we write rp =∞ if G

is uniquely p-divisible). Note that if rp <∞ then the G-radical contains the Z/p-radical.

Moreover, in the category of abelian groups, the G-socle coincides with the G-radical if

and only if G = Z[J−1] (see [19]).

This allows us to construct two subgroups of Q having the same set of primes for

which they are uniquely p-divisible, but with distinct radical, and thus distinct acyclic

approximation. Fix a prime p and define G by rp = ∞ and rq = 1 when q 6= p, so that

H = Z[1/p]. Let M = M(G, 1) and M ′ = M(H, 1). Then we have PMK(Z[1/p], 1) ' ∗,
while PM ′K(Z[1/p], 1) ' K(Z[1/p], 1).

We next give a description of the class of nilpotent M-acyclic spaces; compare with

Corollary 7.9 in [8], see also [21]. The case when n = 1 gives a less general result than

Corollary1.4, but gives a characterization of M(G, 1)-acyclic spaces in terms of their

homotopy groups rather than their homology groups.

Proposition 5.3 Let M be a Moore space M(G, n) with n ≥ 1, and let X be any con-

nected space. Suppose that X is nilpotent if n = 1. Then, X is M-acyclic if and only

if X is (n − 1)-connected, πnX coincides with its G-radical and πk(X) is J ′-torsion for

k ≥ n + 1 in the case when G is torsion, or πk(X) is uniquely J-divisible for k ≥ n + 1

otherwise. 2
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6 The torsion case

In this section we only deal with the case of the Moore spaces M(Z/pk, 1), for k ≥ 1. We

give a characterization of M(Z/pk, 1)-cellular spaces, which holds even for non-nilpotent

spaces. The M(Z/pk, 1)-acyclic spaces have been already identified in Corollary 1.4. The

following reformulation only makes use of the fact that a group A is p-torsion if and only

if A⊗ Z[1/p] = 0.

Theorem 6.1 Let M = M(Z/pk, 1), k ≥ 1. Then a space X is M-acyclic if and only if

π1X coincides with its Z/p-radical and Hn(X; Z) is p-torsion for n ≥ 2. 2

Theorem 6.2 Let M = M(Z/pk, 1), k ≥ 1. Then a space X is M-cellular if and only if

π1X is generated by elements of order pl for l ≤ k and Hn(X; Z) is p-torsion for n ≥ 2.

Proof. We use again the fact that CWMX can be obtained as the fiber of the map

X → PM(Z/pk,2)X
′, where X ′ is the cofiber of ∨M → X. So we have to find a necessary

and sufficient condition for PM(Z/p,2)X
′ to be trivial. First X ′ has to be 1-connected,

and this is equivalent to π1X coinciding with its Z/pk-socle. Knowing that X ′ and thus

PM(Z/p,2)X
′ are 1-connected, the triviality of the latest is equivalent to its acyclicity. By

Proposition 5.3 the homotopy, or equivalently the reduced integral homology of X ′, has

to be p-torsion. The long exact sequence in homology of the cofibration sequence defining

X ′ shows that this is equivalent to H̃∗(X; Z) being p-torsion. 2

Corollary 6.3 Let M = M(Z/pk, 1). A nilpotent space X is M-cellular if and only if

π1X is generated by elements of order pl for l ≤ k and πn(X) is p-torsion for n ≥ 2. 2

The characterization given in [14, 12.5] or [15] of M(Z/2, n)-cellular spaces (πn is

generated by involutions, and the higher homotopy groups are 2-torsion) is true for n = 1

if we work in the category of nilpotent spaces. An easy counter-example for non-nilpotent

spaces is given by M(Z/2, 1) itself. It is of course an M(Z/2, 1)-cellular space, even

though π2M(Z/2, 1) ∼= Z. We finally consider the following example.

Example 6.4 The symmetric groups Σn are C2-cellular for n ≥ 2. Indeed, using the

presentation Σn = 〈σ1, ..., σn−1 | σ2
i = 1, σiσi+1σi = σi+1σiσi+1, σiσi+jσi = σi+j for j ≥ 2〉,

one can obtain Σn as a push-out of a family of homomorphisms between free products of
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C2. For n − 1 ≥ j ≥ 1, let Gj be the coproduct of n − 1 − j copies of C2 ∗ C2, and Hj

the coproduct of as many copies of C2. Define Gj → Hj to be the coproduct of the fold

maps C2 ∗C2 → C2. Let K be the coproduct of n−1 copies of C2, and call the generators

x1, · · · , xn−1. Define a map G1 → K by sending the (2i− 1)st generator to xixi+1xi and

the 2ith one to xi+1xixi+1, where n − 1 ≥ i ≥ 1. For j ≥ 2, the map Gj → K is defined

by sending the (2i− 1)st generator to xixi+jxi and the 2ith one to xi+j. The push-out of

the diagram

(∗n−1
j=1Hj)← (∗n−1

j=1Gj)→ K

is then the symmetric group Σn.

The spaces K(Σn, 1) have therefore C2-cellular fundamental group, and 2-torsion

higher homotopy groups. They are however not M(Z/2, 1)-cellular by Theorem 6.2, since

the integral homology of K(Σn, 1) contains 3-torsion. Actually, we can even compute

the cellularization of K(Σ3, 1). We know by Theorem 1.1 that it is the fiber of the map

K(Σ3, 1) → PM(Z/2,2)K(Σ3, 1)′. The later space is simply connected, and is 3-complete.

Its mod 3 cohomology is that of K(Σ3, 1), so it is by [9, VII, 4.4] the delooping of S3{3},
the fiber of the degree 3 self-map of S3. In other words CWM(Z/2,1)K(Σ3, 1) is a space

whose fundamental group is Σ3 and whose universal cover is S3{3}, i.e., the universal

cover fibration is

S3{3} → CWM(Z/2,1)K(Σ3, 1)→ K(Σ3, 1).

The action of Σ3 on S3{3} is trivial by Theorem 2.9.

In the above example we could identify a certain 3-complete space as the delooping of

S3{3}. In general it is of course not to expect to find nice and well-known spaces as the

fiber of the cellularization. However, the same argument as above proves the following

proposition.

Proposition 6.5 Let π be a finite Cp-cellular group. The universal cover fibration of

Theorem 2.9 is then

ΩK(π, 1)p′̂→ CWM(Z/p,1)K(π, 1)→ K(π, 1)

where Xp′̂ denotes the completion away from p, i.e., Xp′̂ =
∏
q 6=p

Xq̂. 2
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