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JFrom the latter fact we infer that, for each map f, the class of f-local

spaces is precisely the ciass of spaces orthogonai to f and f A S% forn > 1
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about this claim. Thus, there is no unbased analogue of the Whitehead theorem,

stating that a map h: X — Y between connected CW-complexes that induces bijec-
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suffices to recognize homotopy equivalences, but this is a proper class, not a set.)
On the other hand, in the homotopy theory praxis it is frequent to encounter

situations where one would like to prove that certain maps between function spaces

tion spaces usually fail to be path-connected and their components can be of distinct

homotopy types. The results in this article aim to simplify this task whenever pos-
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Y] for all n. In

Section 1 we prove that such a map h is a weak homotopy equivalence if and only

Suppose that a map h: X — Y induces bijections [S%, X] = [ST,

if the induced homomorphism of fundamental groups, h,:m (X, z) — m (Y, h(x)),

i) are both 1
4]

-local ior ail z and U
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The reader is referred to [4] and [5] for a discussion of HZ-local groups.



. From these observations we infer the following general result about maps between

i tumetinm

Of course, this is not true if we remove

methods, we prove the following.

Theorem 0.2 Let f: A — B be any map between (not necessarily connected) C'W-
complezxes, and let h: map, (B, X) — map, (A, X) be induced by f, where X is any

is called f-local [9] if the map of function spaces map, (B, X) — map, (A, X) induced

by f is a weak homotopy equivalence. Thus, Theorem 0.2 asserts precisely that

[BAS™, X]=[AAS", X] forn>0. (0.2)



The fact that (0.2) characterizes f-local spaces is very useful in certain constructions

of homotopy idempotent functors. Indeed, the results contained in a preliminary

A-equivalence if the arrow map,(A, X) — map,(A,Y") induced by ¢ is a weak ho-
motopy equivalence [3], [10, Section 2.A]. jFrom Theorem 0.1 it follows that unbased

provided that the space A is connected. This is useful, for instance, in the context
of [10, p. 54].
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with the set of orbits of [ X, Y] under the usual action of 71(Y"). In particular, [S},Y

corresponds bijectively with the set of conjugacy classes of elements in 7 (V).

+>—A

A map h: X — Y between topological spaces is a weak homotopy equivalence if

T Indices a bijection ot

isomorphisms

Example 1.1 Let N be a torsion-free group such

are conjugate; embed N into a larger group G with a single nontrivial conjugacy
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class of elements as well (this can be done by iterating suitable HNN constructions;

map of classify

o

N Iy 1 : 1
vigregver., Ior everv D« B we may write p = 1 -

1 J . 1
that 18 a monomornhism,

o(x - a) for some a € A and x € G, showing that ¢ is an epimorphism. £

Theorem 1.4 Suppose that a map h: X — Y induces bijections (ST, X] = [S? Y]
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loss of generality that X and Y are path-connected. By assumption, the homo-

morphism h,: 1 (X) — m(Y) induces a bijection of conjugacy classes. Then h, is a



monomorphism, since h,(z) = 1 = h,(1) forces x = 1; hence, our additional assump-

tion guarantees that h, is in fact an isomorphism. Now, for each n > 2, we have
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can be written as

As an immediate consequence, we have

Proposition 1.6 If a group homomorphism ¢ : G — N is surjective on conjugacy

A
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where ¢ is induced by passage to the inverse limit. If all G; and K; are nilpotent

and @ s surjective on conjugacy classes, then o is an epimorphism.

Proof. By refining the inverse systems if necessary, we may assume that G; and K;

have nilpotency class less than or equal to 7. Take any element y € K, and denote

1t 0y (Y1, Y2, Y3, ), WItLL ¥; € i, anda Pi—1\Yi) = Yi—1. VV€ are goiig tO construct an
1 s — Y LI T JA n., T 1= ; &N LR
elemment r < (s sSuch tnat @oir) = y. DY Lelnina 1.0, we call write 4y = 7101 ) WIithh



y = 72p(&) with 2 € I?K, & = m&, m € T'G. Set 29 = (&)2. Then pa(z2) = v

and, moreover, oy (z2) = w1, since I''G is trivial. By continuing the same way, we

Theorem 1.8 Let h: X — Y induce bijections [S, X] =2 [ST,Y] forn > 0. Suppose
that the fundamental group of each path-connected component of Y is nilpotent. Then

h is a weak homotopy equivalence. t

2 Maps between function spaces

Given topological spaces B and X with basepoint, we denote by map, (B, X) the

11 1 1 - ~ LI IR I . ] . s 1. 1 rmi

by m

based map ¢g: B — X, we denote by map,(B, X), the path-connected

containing g, and similarly for unbased maps.

basepoint:

T fart
i /2 5 2 Vaht A 5 I Vah AV [y O\
L 1rmanp, (o )y — Mabilb. A ), — , (Z£.2)

where j ranges over a set of representatives of based homotopy classes of maps such

that j ~ g by an unbased homotopy.
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connected components of map,(A, X) are nilpotent. In view of Theorem 1.8, this
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We therefore assume that f induces a bijection my(A) = mo(B). Then h determ-

M Ants ¢
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Theorem 1.4, it suffices to prove that the induced homomorphisms of fundamental
groups are surjective. For simplicity of notation, we shall assume from now on that

A, B and X are path-connected, and drop most subscripts. Using (2.2), for each

(a) If v is surjective on conjugacy classes, so is @.
(b) If N Cimp and @ is an epimorphism, then ¢ is an epimorphism.

(¢) If N is nilpotent, ¢ is an epimorphism, and ¢ is surjective on conjugacy

'y

D 1S an 1Somor 1S an 1S surjective on conjugac ClaSSes en 1S
(d) If ¢ i ) phi d ¢ is surjecti jugacy classes, then ¢’ i

surjective on conjugacy classes.

(e) If N Cimp and @ is surjective on conjugacy classes, then ¢ is surjective on

conjugacy classes.



Proof. Parts (a) and (b) are straightforward. In order to prove (c), we show that
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N C im¢ and apply (b). Thus, pick any element y € N. By assumption, we may

where both y; and ¢(zg) belong to N. By arguing as in Lemma 1.5, we find that

write it as y = yip(vuv ™ )y; b with y; € N and u,v € G. Now the injectivity of @

ensures that vuv™" € M, as required. Part (e) is straightforward.

In our situation
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cellular map, there is a commutative diagram with exact rows,

o7

4

tion, 7 is surjective on conjugacy classes. Thus, parts (a) and (c¢) of Lemma 2.1,
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is f-local if and only if f induces a bijection [B, X] = [A, X] together with bijections
[BxS™, X]| = [AxS", X]| forn>1. ¢

in [1] or [8], if the map of sets C(B, X) — C(A, X) induced by f is bijective. A class

of objects D is called a small-orthogonality class [1, Section 1.C] if there is a set

or [10, Section 1.B], where it is shown that the class of f-local spaces is reflective in
the based homotopy category for every map f, i.e., that f-localization exists for all

spaces.

11



4 Homology equivalences of function spaces
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HZ-localization, i.e., localization with respect to ordinary integral homology. Recall

that a space L is HZ-local if every integral homology equivalence W — V' of CW-
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Proof. The assumption that ¢ is surjective on conjugacy classes implies that the
induced homomorphism of abelianizations, ¢.: H1(G) — H;(K), is surjective. Ac-
cording to [5, Corollary 2.13], a homomorphism between HZ-local groups which

becomes surjective after abelianizing is itself surjective. £
In view of Theorem 1.4, we have
Theorem 4.2 Suppose that a map h: X — Y induces bijections [ST, X] = [ST,Y]

forn > 0. If the fundamental groups of all path-connected components of X and Y

are HZ-local, then h is a weak homotopy equivalence. 4

Let h:map, (B, X) — map,(A,Y) be any map between function spaces, where A and

B are now assumed to be connected (and this is essential). As before, denote by A’

the ith skeleton of A and similarly for B. The space map* (A Y) is Weakly equlvalent

to the inverse limit of the spaces map_(A*, V)

from [4, § 12] that the space map*(A Y) is HZ-local. Of course, we can argue

the same way with map, (B, X). If h is an integral homology equivalence, then,
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since its source and target are HZ-local spaces, h is a weak homotopy equivalence.

The converse implication is well known, as it is also the fact that a weak homotopy

To prove the converse of the latter claim in our case, observe that the fundamental

group of each path—component of map,(A,Y) or map, (B, X) is an HZ-local group,

o that T

A

Recall that a map ¢: X — Y is said to be an A-equivalence if map, (A4, g) is a
weak homotopy equivalence; cf. [3], [10, Section 2.A]. As a corollary of Theorem 0.1,

Corollary 4.3 Let A be any connected CW-complex. Then a map g: X — Y is

il —

Since [AxS™, X| = [A, map(S™, X)], the latter condition can of course be refor-
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