ABSTRACT. Given an integer n > 1 and any set P of positive integers, one can
assign to each topological space X a homotopy universal map X(Fn) 5 X where
X(Pn) g an (n — 1)-connected CW-complex whose homotopy groups are P-torsion.
‘We analyze this construction and its properties by means of a suitable closed model

the class of maps X — Y inducing isomorphisms of homotopy groups with mod m

coefficients,
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By suitably factoring, in this closed model category, each map of the form x — X

- Pal : ~{Pmn -

ial fibration, *x — X\7" — X, one obtains a

ion foliowed by a tri

colocalization functor which we call a (P, n)-CW-approximation. It is indeed remi-
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a CW-complex K together w1th a map K — X inducing isomorphisms of homotopy
groups. The space X (F™) is built from torsion Moore spaces of type M (Z/m,r),
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mations of spaces using Moore spaces as building blocks have also been discussed

by Blanc in [Bl], where interesting applications have been given.

1
i

the one given in [E-H-R] for the case of ordinary homotopy groups. It does not

lowed by a trivial fibration, X — X(p,) — *. This yields a localization functor

assigning to each X a space whose homotopy groups are uniquely P-divisible in di-

niquely P-divisible if multiplication by m is an automorphism of A for every
m

e un
P,

and an element a € A is said to be P-torsion if there are integers
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homotopical algebra. Thus
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possibly in dimension n; this gives a positive answer to a question raised in [DF92].

Using this fact, we compute K (A, d)("™ for any abelian group A and every d > 1.
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of maps from X to Y.
Given any space M, a space X is called M-cellular [DF96], or an M-CW-

complex [Bl], if X belongs to the smallest class of spaces which contains M and

"

there exists an M-equivalence CW(X) — X where CWy,(X) is an M-CW-
complex; see also [Ch]. This map is called an M-CW-approximation to X. On

positive integer m and n > 2, let M (Z/ m,n) denote the homotopy cofibre of the

standard self- map of S™ of degree m, Wthh is a (n + 1) dimensional CW-complex

M (Z/m, n)-equivalence if and only if the induced homomorphisms

femr (X5 Z/m) — 7. (Y Z/m)
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and weak equivalences, satisfying certain axioms. For details, properties, and fur-
ther terminology we refer the reader to [Q67] and [Q69]. See also the recent survey
by Dwyer and Spalinsky [D-S].

the map i: A — B is said to have the left lifting property (LLP) with respect to
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are isomorphisms for r > n; f is an n-cofibration if it has the LLP with respect

to all trivial n-fibrations. As explained in [E-H-R], the corresponding homotopy
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CW-complexes.

These closed model category structures can be generalized in the following way.

~NTXT -1

Definition 2.1. Let f: X — Y be a map. We say that

(i) f is a weak M-equivalence if the induced homomorphisms

fui[STM, X] = [S"M,Y]
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are isomorphisms for r > 0;

(ii) f is an M-fibration if it has the RLP

(iii) f is an M-cofibration if it has the LLP with respect to every trivial fibration.

Since each map in (ii) is both a CW-inclusion and a homotopy equivalence,

av
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M -cofibration.

Proposition 2.2. A map f: X — Y is a trivial M-fibration if and only if it has
the right lifting property with respect to the family C of inclusions
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[X"M, X] — [X"M, Y] are isomorphisms for all r, so that f is a weak M-equivalence.
In order to check that f is an M-fibration, we use the fact that by glueing together
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M-equivalence, there is a map w: C¥X"M — X such that wi = v and fw ~ v.
Let H:CYX"M x I — Y be a homotopy with H@O = fw and H@l = v, where Jp,

c

a homotopy F:C¥"M x I — X such that fF H, extendlng both w and the
constant map (a: t) — u(z) for x € ¥"M and t € I. Then w' = F0, satisfies

Theorem 2.3. For every space M which is the suspension of a CW-complez, the
category of pointed topological spaces together with the above families of weak M -

We denote by T’ opiw this closed model category structure on the category Top,,
and thus by Ho(Top ) the category obtained from Top* by formally 1nvert1ng the

factorizations stated in axiom CMb, we resort to Quillen’s “small object argument”
(see [Q67, 11.3.3] or [D-S, 7.12]), using the maps given in Proposition 2.2 above.

Hence, the resulting factorizations are functorial.

M Where each M is compact,

the space M is (p0881b1y 1nﬁn1te) Wedge \/

a€cA
then one can still avoid the use of transfinite sequences by replacing the family C

in Proposition 2.2 by the family consisting of * — M, and ¥"M, — CX"M,, for

1

i
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If one considers the M-cofibrant space XM constructed by factoring a map

%

by means of the “small object argument”, what one has is a functor (—)M: Top, —

Top, together with a natural transformation e:(—)™ — Id. This is in fact a



factoring each map X — * into an M-cofibration followed by a trivial M-fibration,

X — Xy — %,

T id
T 1da

and X — Xj; will be called colocalization and localization, respectively. In this
section we describe some basic properties of colocalization.
Since M-cofibrations are ordinary cofibrations and Serre fibre maps are M-

fibrations, it follows from standard arguments (see e.g. Theorem 9.7 in [D-S]) that
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and ¥y there is a natu
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(3.1) (X, V)M = XMV

that is, the functor (—)™ is left adjoint to the “identity” functor from Ho(Top,)
to Ho(Top).

If we suppose in addition that X is M-cofibrant, then, since all spaces are M-
fibrant, the set [X,Y]™ is in one-to-one correspondence with the set of homotopy

classes maps from X to Y in Top™; see [Q67, 1.16]. Now, arguing as in [D-S, 4.15]

then there is a natural bijection [X, Y] 22 [X,Y]. Since weak M-equivalences are

isomorphisms in H o(Topiw ), we have the following.

Theoorem 2.9
1'hegre Z.

if
1]

homotopy equivalence if and only if it is a weak M -equivalence. [J
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M

Ho(Topiw)T5 Ho(Top,)

sets up an equivalence of categories between Ho(Topiw) and the full subcategory of

be used for calculations in Section 5.

Theorem 3.6. Let X be any space and let F' be the homotopy fibre of the localiza-
tion map X — Xp. Then FM ~ XM [0

If the space M is an infinite wedge \/ ) Ma, where each M, is compact, but M
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RLP with respect to the family C’ of inclusions * — M, and X" M, — CX" M, with
r >0 and a € A; cf. Proposition 2.2. Hence, for each space X, we can construct a

suitable model for XM by means of the “small object argument” using the family

Firstly, we consider all maps of the form g: M, — X, with a € A, and use them
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coincides with f on A and with g on the wedge summand labelled with g, for each g.
This map p°: X° — X has the RLP with respect to * — M, for all @ € A. Next,

we construct inductively a sequence

]
y
=
.
s
-




JLVAIV. 111 QUL UL

XM by Theorem 3.2.

This construction can be modified in order to obtain substantially smaller (al-

though possibly non-functorial) models for X*. For instance, it suffices to pick
one representative within each pointed homotopy class of maps at each step of the

process. Thus, if f: A — X is a map of CW-complexes and we use cellular maps

i1 e COLSIrucCiitnl above, et we ohtaill

A — X is an M-cofibration, X — X is a weak M-equivalence (which need not be
an M-fibration) and X is a CW-complex.

shall use the notation Topg ™) for the associated closed model category structure,
and refer to the corresponding families of maps as weak (P, n)-equivalences, (P, n)-

fibrations, and (P, n)-cofibrations, respectively. Likewise, we denote the localization
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Thus, a map f: X — Y is a weak (P, n)-equivalence if and only if the induced
homomorphisms f.: 7.(X;Z/m) — 7.(Y;Z/m) are isomorphisms for r > n + 1



equivalence is a weak (Pj,nq)-equivalence.

Our first aim is to provide an algebraic characterization of (P, n)-cofibrant spaces.

PR
T

primary components, and every abelian p-group of finite exponent is a direct sum

of cyclic groups. For a torsion abelian group G and a prime p, we denote by G,

homotopy groups. Suppose that w.(X), =0 and 7(Y), =0 forr <n—1, where p
is a prime. Then f induces isomorphisms 7,(X; Z/p*) = 7, (Y Z/p*) forr > n+1

Proof. In order to prove the first implication, let F' be the homotopy fibre of f.

The homotopy groups of F are torsion and 7, (F"), = 0 for » < n—2. Moreover, the

N -~ ] TT
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for all r, except perhaps for r = n and r = n—1. Now we exploit the exact sequence
derived from (1.1),

for all r, except perhaps for r = n, and the homomorphism f.:m,(X), = m,(Y),
is injective. This implies that Tor(m,(X),Z/p*) — Tor(m,(Y),Z/p*) is injective

diagram

Tt (X3 Z/pF) ——— Tor(m,(X),Z/p")
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Theorem 4.2. Let X be a space, p a prime, and n > 2.

(1) If P = {p*} with k > 1, then X has the weak homotopy type of a (P,n)-
coﬁbmnt space zf and only if X is ( — 1)-connected, 7, (X) is p-torsion for

cofibrant space if and only if X is (n — 1)-connected and 7,.(X) is p-torsion
for all r > n.

Proof. In both cases, if X is (P, n)-cofibrant then the colocalization map X (Bn) _y

X is a homotopy equivalence, by Corollary 3.4. In the construction of X (™)

groups is a Serre class [S] and it is closed under direct limits, it follows from a Mayer—
n)

Vietoris argument that the reduced singular homology groups H, (X (P,

homotopy groups 7,.(X (P ")) are p-torsion for all 7 as well. Moreover, H, (X (P )

is an epimorphic image of H, (X°); hence, in case (1) the group H, (X ™) is a

)k — (v(Pn)\ :
{ X510 5

In order to prove the converse statements in (1) and (2), we need to show that
the hypotheses made imply that the colocalization map X (¥ — X induces iso-

morphisms 7, (X (7 ’”)) > 7,.(X) for all . But this follows from Lemma 4.1. [

-cofibrant if P = {p}.
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space and 7,.(X) is p-torsion for r > n + 1. This class of spaces was considered by

Bousfield in [B94]. It would be 1nterest1ng to develop algebraic models for their ho-
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We next show that the case where P is any set of positive mtegers can be reduced

to the special cases discussed above. We say that a prime p has finite height in

such integers h; we shall denote it by h( ). Otherwise, we say that p has infinite

height in P. The following result generalizes Theorem 4.2.

Theorem 4.3. Letn > 2 and let P be an arbztmry set of posztwe mtegers Then a

N Vo




the union of the sets {p,p*,p>,...} for each prime p of infinite height in P, and
{p"®)} for each prime p of nonzero finite height h(p) in P. Then X (P ~ x(Qn)
for any n > 2.

Proof. By Theorem 4.3, the classes of (P, n)-cofibrant spaces and (@, n)-cofibrant

spaces coincide. Hence, our claim follows from Corollary 3.3. [

Proof. Since every weak (P, n)-equivalence is a weak (P;, n)-equivalence, there is a

map X (Fin) — X (Pn) for each 7. These yield together a map

For each index i, the inclusion of X 7™ into V., X (Pi:n) induces an isomorphism
in homology with coefficients in P;. Hence, by [Ne, 3.10], it also induces an isomor-
phism in homotopy with coefficients in P;, that is, it is a weak (P;, n)-equivalence.
Therefore, the natural map \/, X (Pim) 5 X is a weak (P;, n)-equivalence for all 4,

and hence it is a weak (P,n)-equivalence. It follows that (4.3) is a weak (P,n)-

M(p,00,n) = \/;Z, M(Z/p",n).
Let X be a space and W =V, 5,V

positive integers, possibly empty. For each prime p, let n(p) be the smallest value

mep, M(Z/m,n), where each P, is a set of

of n such that p divides some number in P,,, or omit p from the indexing if it does
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not occur in W. Let h(p) be the height of p in the set P, (here we do not exclude
the possibility that h(p) = o). Let M =\/, M(p, h(p),n(p)). Then

rat hamntanyu o
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W-equivalences and weak M-equivalences coincide, and the second equivalence is
proved as in Theorem 4.5.

Let P be any set of primes and M =/

peP M (p, kp,np), where n, > 2 and k,, is

1 \ 7 AL \

Theorem 4.6. Let P be any set of primes. Let Py, ..., P. be a finite partition of P

: ' 77 n
id

77

is either a positive integer or co. Then, for each space X, the inclusion

is the identity for all 4, the arrow (4.5) is a (P;, 2)-equivalence for all 7 and hence it
is a (P, 2)-equivalence. Finally, observe that the domain of (4.5) is (P, 2)-cofibrant
and the codomain has the weak homotopy type of a (P, 2)-cofibrant space. [

This result remains true for an infinite partition of P into mutually disjoint
subsets, provided we take [[, X Mi to be the weak product of the spaces XM::
thus, m, ([T, XM) = @, m,(X™?) for all n. This fact, together with Theorem 4.5,



and the codomain has the weak homotopy type of a (P,n)-cofibrant space (by
Theorem 4.3), the map (4.6) is a weak homotopy equivalence. As above, this result

remains true for infinite weak products.

§5. CALCULATING (P, n)-CW-APPROXIMATIONS

1 it "~ 11 11 i M . 1
J-colibration followed Dy a trivial
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(5.1) T (X(pp)) = 7 (X) ® Z[P™ forr >n+1,

while 7, (X (p,n)) is isomorphic to the quotient of 7, (X) by its P-torsion subgroup;
cf. [B94, 5.2]. We shall use the fact that the P-torsion subgroup of an abelian
group A is isomorphic to Tor(A,Z /Z is a direct sum of




n

I
"
=
v
i
[

Proof. We infer from the homotopy exact sequence associated to F' — X — X (p )

that F' is always (n — 1)-connected and its homotopy groups are P-torsion. Thus,

if no prime has finite height in P, then F' is Weakly equlvalent to a (P, n)-cofibrant

(5.2) 0 — m11(X)® (Z[P~Y/Z) = 7,(F) — Tor(n.(X),Z[P~'])Z) — 0,

which splits because the kernel is a divisible group. Look at the case r = n and

are fulfilled for every prime which has finite height in P Of course, this restriction

dlsappears if all prlmes d1v1d1ng the numbers in P have infinite height, e. g if P
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(5.3) is
spaces X .
The following result answers a question left open in [DF92, 6.4], where it was

asked if F and X (7™ differ at most in one homotopy group.

F’ be the homotopy fibre of g. Then WT(F ) =
Tor(m,(F),Z/p*). Therefore, the map
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nomaotopy groups or A, 10r any 7 -~ Z and any set I~ 0oL DOSILIvVE 1NLegers. 1 ine
case P = {p,p?,p3, ...}, the homotopy groups of X (Pm) are isomorphic to those
of F', and the latter can be read directly from the split exact sequence (5.2). The



.5, one can ompute X (P1) for other sets P of positive integers.

N

Theorem

Example 5.3 Let P = {p*}, where p is a prime. Then, for any abelian group A
and d > 1, we have

\

ity

3

’
——

where B = Tor(A ® Z/p>, Z/p*) = A/(p*A + T,A) and we denote by T,A
the p-torsion subgroup of A. To check this, consider the homotopy fibre F' of
n: K(A,d) — K(A,d)pn) and use Theorem 5.2. If d > n + 1, then

and F' is in fact a product

cf. [B82, § 4]. If d = n, then F ~ K(T,A, n).

Example 5.4 Let P = {p,p? p>,...}, where p is a prime. Using similar arguments

as in the previous example, for any abelian group A and d > 1, we have

* ifd<n-—1;
K(A,d)P™ ~ ¢ K(T,A, n) if d =n;
K(AQZ/p®, d—1) x K(T,A, d) ifd>n+1.
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