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homological localizations

Carles Casacuberta and José L. Rodriguez *

Abstract

Our object of study is the natural tower which, for any given map f: A — B
and each space X, starts with the localization of X with respect to f and converges

with respect to any generalized homology theory E,, yielding e.g. an analogue of
Quillen’s plus-construction for each E,. We discuss in detail the case of ordinary
homology with coefficients in Z/p or Z[1/p]. Our main tool is a comparison theo-
rem for nullification functors (that is, localizations with respect to maps of the form
f: A — pt), which allows us, among other things, to generalize Neisendorfer’s ob-
servation that p-completion of simply-connected spaces coincides with nullification

with respect to a Moore space M(Z[1/p],1).

0 Introduction

If E, is any generahzed homology theory, then, as shown by Bousfield in [4], one can con-
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induces an isomorphism FE,(X) = E.(Y) if and only if it induces a homotopy equiva-
(

lence Xp ~ Yg. This functor is referred to as (unstable) E-localization, and it is fully
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In the case when F = H R, ordinary homology with coefficients in a commutative ring

R with unit, the H R-localization functor is closely related with the R-completion functor

generally, whenever Xpypg is nilpotent. In fact, H R-localization is the best idempotent
approximation to R-completion, in the sense that they render invertible precisely the
same class of maps.

The present paper originated from the observation, made from various sources, that in-

verting one single easy map often produces the same effect —or almost the same effect— as

the work of Bousfield [6], [7] and Dror Farjoun [13]. One first instance is Neisendorfer’s
remark [21] that inverting a map of the form M(Z[1/p],1) — pt (where “pt” denotes a

map p: S' — S, one obtains a functor which is closely related to HZ[1/pl]-localization,

and in fact agrees with HZ[1/p]-localization on nilpotent spaces [11]. Almost the same

the same result as by inverting all HZ[1/p]-equivalences which are suspensions, namely

a functor which preserves the fundamental group and tensors with Z[1/p] the higher ho-

corresponding homotopy cofibres, we obtain a tower of localizations with increasingly

weaker effect and converging to X. Of course, this makes sense for every map f: A — B,

motivation for the study of such f-towers was offered in [7] and [15]. Note that, if we

choose f to be a v,-map for n > 1, then the outcome is a family of approximations to

localization with respect to certain Morava K-theories. In particular, it would be inter-

@

mod p complex K-theory; see [13].
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It is important to retain the above suggested duality between Z/p and Z[1/p], which
is very much in the spirit of some parts of the book by Bousfield and Kan [9]. Indeed, the

to comparing, for specific classes of groups, the effect of dividing out p-torsion (resp. all

infinitely p-divisible elements) with the effect of dividing out the Z[1/p]-perfect radical

[y
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We assume that all spaces are pointed, and all maps and homotopies preserve basepoints.
The space of based maps from X to Y is denoted by map, (X, Y).

Let f: A — B be any map. We follow the terminology of [7], [13], by calling f-local

natural transformation {: id — L, such that, for every space X, the map Ix: X — L;X

is an f-equivalence and the space L;X is f-local. Moreover, L; also defines a functor on
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also follows that a map h: X — Y is an f-equivalence if and only if the induced map

L¢h: LyX — LfY is a homotopy equivalence, and this is the same as asserting that
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For simplicity, we use the term “idempotent functor” (in any category) to denote a

functor L which is part of an idempotent monad (L,[), as in [1]. All natural transforma-
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is contained in the class of Ls-local objects; in this case, the natural transformation 6 is

unique. As a special case of this general situation, we infer the following.

this case, the natural transformation 0 is unique. O

We emphasize another elementary fact which will be useful in the analysis of diagrams
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L3 X is Ls-local. Hence the arrow Sy : L3X — L X is an isomorphism, and so is also

OéxiLgX—>L1X. O

If the target space B of the map f: A — B is contractible, then f-local spaces

is A-null if and only if map, (A4, X) is weakly contractible, or, equivalently, if [X*A, X]

consists of a single element for all £ > 0.
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Most of the above machinery can be paralleled in the category of groups. In fact, as

explained in [6], homotopy localization with respect to a map (or a set of maps —there

mild conditions. Thus the category of groups (endowed with the discrete simplicial model
structure) fits into this framework very well. Specifically, if ¢: G — K is any group

homomorphism, we say that a group L is ¢-local if the induced map

of groups. We shall refer to it as y-localization. In the special case when the target K

of p: G — K is the trivial group, we preferably use the term G-reduction instead of

is called the G-radical of . Thus, the G-radical of a group 7 is the (unique) maximal

subgroup of m among those whose own G-reduction is trivial. The basic examples are the
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following stronger result holds in the case of G-reductions:

Proposition 1.4 Given two groups G, Gs, consider the homomorphisms p;: G; — {1},

i1 =1,2. Then the following assertions are equivalent:




(¢) Ga//Gy is the trivial group.

(e) The class of groups annihilated by L., is contained in the class of groups annihilated

by Ly, .

and 0, is surjective for every group m. O

2 On m-compatible nullifications
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connected space X the natural homomorphism mX — m(LsX) is an f.-equivalence of

groups and hence there is a natural transformation of functors

7T1Lf —)Lf*ﬂ'l. (21)

X )18

We say that L is m-compatible if (2.1) is an isomorphism for all connected spaces X . That
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group 71 (LX) is f.-local and therefore the functor L is m;-compatible. This observation,

together with Theorem 3.5 in [10], yields

However, if A = K(Z/p, 1), then P4 is not m-compatible; see Example 3.4 in [10].
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The properties of m;-compatible nullification functors turn out to be particularly pleas-

ant. For example, such functors are essentially determined by their effect on the funda-

this claim is made more precise.

Theorem 2.2 Let L be any idempotent functor on Ho. Suppose given a mi-compatible

nullification functor Ps together with a natural transformation 6: Py — L which is an

PROOF. Let X be any space such that m X//m A is trivial. Then P4X is simply-

connected, and therefore the lower horizontal arrow in the commutative diagram

an L-equivalence, so that the right-hand vertical arrow is a homotopy equivalence as well,

from which our claim follows. O

This provides us with a good method to decide whether two 7;-compatible nullification

used strongly in the special cases discussed in Section 4; cf. Theorem 4.5 below.

Theorem 2.3 Assume given two spaces Ay, As together with a natural transformation
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equivalence on simply-connected spaces. Then, for a space X, the map Ox: P4, X — Py, X
is a homotopy equivalence if and only if the m Aj-radical and the m As-radical of mX

coincide.



means that m X//m Ay = m X//mA;, from which it follows that the m; Aj-radical and
the m; As-radical of m X coincide.

Hom (7 Ay, ) are trivial, the space Bm is A;-null and Ay-null. By Proposition 1.3, the

rows of the commutative diagram

alization of Theorem 4.4 of [10], according to which, for every connected space X and

every prime p, there is a homotopy fibration (Z[1/p])scX — Pri(z)pyX — Bm, where 7

1

Another important instance of Theorem 2.4 is the case when L is ordinary homology

localization and Py is the associated plus-construction (see Section 3 below).

equivalence on simply-connected spaces. For a given space X, write 1 = mX//m A, and

let X be the homotopy fibre of the natural map X — Bw. Then there is a commutative
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Thus we may view
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and

ont1-equivalence. This gives an easy proof of the following statement (which is quite

well-known, and could, in fact, be inferred from the construction of Ly described in [13]
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Proposition 3.1 Let f: A — B be any map between n-connected spaces, n > 1. Then,

for any connected space X, the f-localization map 1: X — Ly X induces isomorphisms

L o o

copies of A and its suspensions X*A to X; cf. [7, Proposition 2.9].

As a consequence of Proposition 3.1, for every space X and every map f: A — B

Theorem 3.2 Let fi, fo be two maps, and assume that fo is an fi-equivalence. Then

there is a unique commutative diagram of idempotent functors

) ) ) ) )
Ly, < Po, < Lss, < Pso, < Ls2p < ... . O

Jur main examnles of f-towers involve homoloov localizations and certain “annroxi-
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and a space X, we denote by Xgg the localization of X with respect to ordinary homology
with R coefficients; see [4]. More generally, let F, be any homology theory satisfying the
limit axiom. Let ¢ be the smallest infinite cardinal which is at least equal to the cardi-

classes of CW-inclusions which are F-equivalences and for which the cardinality of the set

of cells of B is less than or equal to c. Then Ly, is precisely E-localization; see [4, § 11] or

1
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e P-X is contractible.

contains a unique maximal R-perfect normal subgroup P®G, which we call the R-perfect

radical of G. The map X — Xj is an H R-equivalence and induces the projection

Proposition 3.3 For every commutative ring R with unit, the functors ( )uyr and

( R, sc

Lemma 7.3] it follows that m;(Xgr) is h.-local for every X. This means precisely that the
( )ur is m-compatible. Similarly, let C' be the homotopy cofibre of h. Then m;C

Y

It would be very interesting to decide if ( )z and ()3 are m;-compatible for other
homology theories FE,, in particular for complex K-theory. Another challenging, closely

related problem, is to find a purely group-theoretical description of the homomorphism

Xp+ Xp « Xsp + Xip  Xeop ... (3.4)

for the tower (3.1) in the case of E-localization.
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4 Approximating ordinary homology towers

0—=Fy—>F —-G—0

together with a map w: Wy — W; between suitable wedges of circles inducing the inclusion

=ty
|
|

functor [ , X] to the cofibre sequence associated with w, we obtain the following result;

cf. [2] or [7, § 5].

7, X is G-reduced.

. assertion (b) is true for n = 1 if m X is abelian, and assertion (a) is true for
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On the other hand, by writing
Z]1/p) = (z1,29,..., %y, ... | &y =2y, forall i),

we have presented Z[1/p] as the cokernel of a specific homomorphism between free groups.

Let g: V;S' — V;S' induce this homomorphism, and denote by M(Z[1/p],1) the homo-
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“true” Moore space in t

the letters f and g will consistently denote the two maps which we have just considered.

Remark 4.2 When G = Z/p, the condition that an abelian group A be Z/ p—reduced
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says precisely that A is a p’-local group [17], where p’ denotes the complement of p (thus,
a p-local abelian group is just a Z[1/p]-module). In the case G = Z[1/p], for an abelian

(a) Lgan ~ XE”HZ[l/p]-

(©) Pu@/pninX = X;)_”HZ[l/p]'

(&) Pu@nmninX =~ Xsugz), O

Iy D0 H

7

T'heorem 3.2 yields, for every space X, a homotopy commutative diagram of towers

B

N H

Z[1/plX  Xuzpp < X;;Z[l/p] — Xsowzpy < X;)_HZ[l/p] =

To T o T T
LfX — PM(Z/p,l)X < Lng — PM(Z/p’g)X < e
(4.1)
Similarly, the fact that lf[*(M(Z[l/p], 1);Z/p) = 0 gives
T ¢t T ~



According to Theorem 4.3, all vertical arrows in (4.1) and (4.2) are homotopy equiv-
alences if X is simply-connected. In fact, in order to infer that #* and (™ are homotopy

equivalences it suffices to impose that m X be abelian.
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The assumptions of Theorem 4.5 are satisfied in many cases. We record the following

Iinstances.

(a) For every prime p, the Z/p-radical and the Z[1/p|-perfect radical of ™ coincide.

(b) For every prime p, the Z[1/p|-radical and the Z/p-perfect radical of © coincide.

existence of ( ensures that the Z[1/p]-radical of 7 is contained in the Z/p-perfect radical.

/L e ;L

for shortness. Since ) is an epimorphic image of G, we have H(Q;Z/p) = 0, and this
implies that H;(Q) is a p-divisible abelian group. If ¢ is the nilpotency class of @ and T’

Theorem 4.7 Suppose that 7 is finite. Then:

(a) For every prime p, the Z[1/p|-radical and the Z/p-perfect radical of ™ coincide.

PROOF. In case (a), By Proposition 1.4, it suffices to prove that a finite group = is
e

Z[1/p]-reduced (i.e., Hom(Z[1/p],7) = 0) if and only if it contains no nontrivial Z/p-




In case (b), the existence of 6 ensures that the Z/p-radical of 7 is contained in the

Z[1/p|-perfect radical for all primes p (cf. Proposition 1.4). To prove the converse for

7]

in fact Z-perfect. On the other hand, by the Feit-Thompson theorem [16], H is solvable.
This forces H to be trivial. Therefore, the Z/2-radical of = contains all Z[1/2]-perfect

\lj‘lm‘

radical of 7 is trivial, while the Z[1/p|-perfect radical is the whole of 7. If p # 2, then we
may even find examples of finite groups for which the Z/p-radical and the Z[1/p|-perfect

divisible by p (such groups are indeed available for all primes p # 2).

Example 4.9 For any fixed prime p, let 7 be an infinite perfect group of exponent p” for
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